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Motivation

One of the major goals of Al is to help humans in solving complex tasks
How can | fill my container with pallets?
Which is the shortest way from Milan to Innsbruck?
Which is the fastest way from Milan to Innsbruck?
How can | optimize the load of my freight to maximize my revenue?
How can | solve my Sudoku game?
What is the sequence of actions | should apply to win a game?

Sometimes finding a solution is not enough, you want the optimal solution
according to some “cost” criteria

All the example presented above involve looking for a plan

A plan that can be defined as the set of operations to be performed of an
initial state, to reach a final state that is considered the goal state

Thus we need efficient techniques to search for paths, or sequences of
actions, that can enable us to reach the goal state, i.e. to find a plan

Such techniques are commonly called Search Methods



Examples of Problems: Towers of

Hanol

3 pegsA, B, C

3 discs represented as natural
numbers (1, 2, 3) which
correspond to the size of the
discs

The three discs can be
arbitrarily distributed over the
three pegs, such that the
following constraint holds:

diisontop ofd,—d;<d
Initial status: ((123)()())
Goal status: (()()(123))

WIN -~ m
I
P

A B C

Operators:
Move disk to peg

Applying: Move 1to C (1 — C)
to the initial state ((123)()())
a new state is reached

((23)0(1))

Cycles may appear in the
solution!



Examples of Problems:
Blockswom

/ E
c| [s
TmE W
Initial State Goal State
Objects: blocks « Initial state:
Attributes (1_ary — ontable(E), cleartop(E)
relations): cleartop(x) ~ ontable(A), cleartop(A)
’ — ontable(B), cleartop(B)
Ontaple(x) — ontable(C)
Relations: on(x,y) — on(D,C), cleartop (D)
Operators: puttable(x) y Applymg the move put(E,A):
where x must be on(E,A), cleartop(E)
cleartop; put(x,y), where — ontable(A)
X and y must be — ontable(B), cleartop(B)
Cleartop — ontable(C)

— on(D,C), cleartop (D)



- TECHNICAL SOLUTION

Search Methods



Search Space Representation

Representing the search Node Loop

space is the first step to
enable the problem resolution  Arc

Search space is mostly
represented through graphs
A graph is a finite set of
nodes that are connected by

arcs

A loop may exist in a graph,
where an arc lead back to the
original node

In general, such a graph is
not explicitly given

Search space is constructed
during search




Search Space Representation

] undirect direct
o A graph is undirected if O ® O ®
arcsdonotimplya @ O @ O
direction, direct otherwise o ® @ @
: : ted disconnected
o A graph is connected if connec
every paiz‘:l %f nodeshis ® @ O O ® @ O @
connecte a pat
yap o © e o
tree
o A connected graph with no @ ®
loop is called tree @ O
O O
o Aweighted graph, is a _
graph for which a value is weighted
associated to each arc o L@ 6 9

@@



Example: Towers of Hanol*

These nodes
are equals
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* A partial tree search space representation



Example: Towers of Hanol*

bbb cbb cab aab aac bac @.@
\_/ N

* A complete direct graph representation
[http://en.wikipedia.org/wiki/Tower_of Hanoi]



Search Methods

A search method is defined by picking the order of node
expansion

Strategies are evaluated along the following dimensions:
completeness: does it always find a solution if one exists?
time complexity: number of nodes generated
space complexity: maximum number of nodes in memory
optimality: does it always find the shortest path solution?

Time and space complexity are measured in terms of
b: maximum branching factor of the search tree
d: depth of the shortest path solution
m: maximum depth of the state space (may be «)



Search Methods

Uninformed techniques
Systematically search complete graph, unguided
Also known as brute force, naive, or blind

Informed methods

Use problem specific information to guide search
In promising directions



- UNINFORMED SEARCH

Brute force approach to explore search
space



Uninformed Search

A class of general purpose algorithms that operates in a brute force way

The search space is explored without leveraging on any information on the
problem

Also called blind search, or naive search
Since the methods are generic they are intrinsically inefficient

E.g. Random Search
This method selects randomly a new state from the current one
If the goal state is reached, the search terminates

Otherwise the methods randomly select an other operator to move to the next
state

Prominent methods:
Depth-First Search
Breadth-First Search
Uniform-Cost Search



Depth-First Search

Depth-First Search (DFS) begins at the root node and exhaustively search each
branch to it maximum depth till a solution is found

The successor node is selected going in depth using from right to left (w.r.t. graph
representing the search space)

If greatest depth is reach with not solution, we backtrack till we find an unexplored
branch to follow

DFS is not complete
If cycles are presented in the graph, DFS will follow these cycles indefinitively
If there are no cycles, the algorithm is complete

Cycles effects can be limited by imposing a maximal depth of search (still the algorithm is
incomplete)

DFS is not optimal
The first solution is found and not the shortest path to a solution

The algorithm can be implemented with a Last In First Out (LIFO) stack or recursion



Depth-First Search: Algorithm

List open, closed, successors={};
Node root_node, current_node;
insert-first(root_node,open)

while not-empty(open);
current_node= remove-first(open);
iInsert-first (current_node,closed);
if (goal(current_node)) return current_node;
else
successors=successorsOf(current_node);
for(x in successors)
if(not-in(x,closed)) insert-first(x,open);
endIf
endWhile

N.B.= this version is not saving the path for simplicity



Depth-First Search: Example

A C D

open={S} closed ={}

0. Visit S: open={A,B}, closed={S}
1.Visit A: open={S,B,F,B}, closed={A,S}

2.Visit S: open={B,F,B}, closed={S,A,S}
3.Visit B: open={S,A,F,D,F,B}, closed={B,S,A,S}

4.Visit S: open={A,F,D,F B}, closed={S,B,S,A,S}
5.Visit A: open={F,D,F,B}, closed={A,S5,B,S,A,S}
6.Visit F: GOAL Reached!



Depth-First Search: Example

(&

0 0
\

Result is: S->A->B->F



Depth-First Search: Complexity

Time Complexity

assume (worst case) that there o =0
Is 1 goal leaf at the RHS
so DFS will expand all nodes d=1
=1+b+b2+ .. + pm o/ \o m=d=2
G

=0 (b™M)
where m is the max depth of the
tree O d=0
. {N -
Space Complexity
how many nodes can be in the 4=2
gueue (worst-case)? -
at each depth | < d we have b-1 4=3
nodes -
at depth m we have b nodes O/ \] m=d=4

total = (d-1)*(b-1) + b = O(bm)



Breadth-First Search

Breadth-First Search (BFS) begins at the root
node and explore level-wise al the branches

BFS is complete
If there is a solution, BFS will found it
BFS Is optimal

The solution found is guaranteed to be the shortest
path possible

The algorithm can be implemented with a First In
First Out (FIFO) stack



Breadth-First Search: Algorithm

List open, closed, successors={},
Node root_node, current_node;
Insert-last(root_node,open)

while not-empty(open);
current_node=remove-first(open);
Insert-last(current_node,closed);
if (goal(current_node)) return current_node;
else
successors=successorsOf(current_node);
for(x in successors)
if(not-in(x,closed)) insert-last(x,open);
endIf
endWhile

N.B.= this version is not saving the path for simplicity



Breadth-First Search: Example

T /@

s| [a] (F)

JEIOERG

D

©

e A

F A C D

open = {S}, closed={}

Visit S: open = {A,B}, closed={S}

Visit A: open={B,S,B,F}, closed={S,A}

Visit B: open={S,B,F,FA,C,D}, closed={S,A,B}
Visit S: open={B,F FA,C,D}, closed={S,A,B,S}
Visit B: open={F,FA,C,D,S,A,C,D},
closed={S,A,B,S,B}

Visit F: Goal Found!



Breadth-First Search: Example
_

Result is: S->A->F



Breadth-First Search: Complexity

Time complexity is the same magnitude as DFS
O (b™)
where m Is the depth of the solution

Space Complexity
how many nodes can be in the queue (worst-case)?

assume (worst case) t here IS 1 goal leaf at the
RHS

so BFS wi e all nodes ' .

£ b+ b2 ....... + pm
Diom @) Q) )
0 0 0-9-0-0-0-0-



Further Uninformed Search
Strategies

Depth-limited search (DLS): Impose a cut-off (e.g. n
for searching a path of length n-1), expand nodes with
max. depth first until cut-off depth is reached (LIFO
strategy, since it is a variation of depth-first search).

Bidirectional search (BIDI): forward search from initial
state & backward search from goal state, stoio when
the two searches meet. Average effort O(b%?) if
testing whether the search fronts intersect has
constant effort

In Al, the problem graph is typically not known. If the
graph is known, to find all optimal paths in a graph
withdlabelled arcs, standard graph algorithms can be
use



- INFORMED SEARCH

Using knowledge on the search space to
reduce search costs



Informed Search

Blind search methods take O(b™) in the worst case

May make blind search algorithms prohibitively slow
where d is large

How can we reduce the running time?

Use problem-specific knowledge to pick which states are better
candidates



Informed Search

Also called heuristic search

In a heuristic search each state is assigned a "heuristic
value” (h-value) that the search uses in selecting the
“best” next step

A heuristic is an operationally-effective nugget of
iInformation on how to direct search in a problem space

Heuristics are only approximately correct



Informed Search: Prominent

methods

S =
1 Best-First Search

0 A*

o Hill Climbing



Cost and Cost Estimation

t(n)=g(n)+h(n)

g(n) the cost (so far) to reach the node n
h(n) estimated cost to get from the node to the
goal

f(n) estimated total cost of path through n to
goal



Informed Search: Best-First Search

Special case of breadth-first search

Uses h(n) = heuristic function as its evaluation function
Ignores cost so far to get to that node (g(n))

Expand the node that appears closest to goal

Best First Search is complete
Best First Search is not optimal

A solution can be found in a longer path (higher h(n) with a lower
g(n) value)

Special cases:

uniform cost search: f(n) = g(n) = path to n
A" search



Best-First Search: Algorithm

List open, closed, successors={};
Node root_node, current_node;
insert-last(root_node,open)

while not-empty(open); returns the list of direct
current_node=remove-first (open); descendants of the
insert-last(current_node,closed); current node in shortest
if (goal(current_node)) return current_node; cost order
else

successors=estimationOrderedSuccessa
for(x in successors)
if(not-in(x,closed)) insert-last(x,open);

rrent_node);

endlIf
endWhile

N.B.= this version is not saving the path for simplicity



Best-First Search: Example

/ @

h=1 h=1
A o ~
h=2 _

h=2 —> © h=2 =2 h=2

open = {S}, closed={}

Visit S: open = {A,B}, closed={S}

Visit A: open={B,F,B,S}, closed={S,A}

Visit B: open={F,B,S,F A,C,D}, closed={S,A,B}
Visit F: Goal Found!

W= o

In this case we estimate the cost as the distance from the root node (in term of nodes)



Best-First Search: Example

S

O,

h=1, w=2 h=1, w=1

A B
\KZ, w=7 h=2, w=4
h=2 =2 h=2

B @ F A

(F) (o

Result is: S->A->F!

If we consider real costs, optimal solution is:
S->B->F




A*

Derived from Best-First Search
Uses both g(n) and h(n)

A* Is optimal

A* Is complete



A* . Algorithm

List open, closed, successors={};
Node root_node, current_node, goal,;
insert-back(root_node,open)

returns the list of direct
descendants of the

while not-empty(open);
current_node=remove-front(open);
insert-back(current_node,closed);
if (current_node==goal) return current_node;
else

current node in shortest
total estimation order

successors=totalEstOrderedSuccessors/
for(x in successors)
if(not-in(x,closed)) insert-back(x,open);

urrent_node);

endlIf
endWhile

N.B.= this version is not saving the path for simplicity



A* . Example
S

h:]., W:2, g:2 h:l, W:]., g_
« 2)

AN B
h=2, heo h=2"Ww=+-g= h=2, w=4, g:5
w=2 7 h=2 h=2, w=4, g=5
g=4 w=1

9=3 i h=2

s (&) (F) F) 5 [A]= |c|wa |D

(o]
11
N

open = {S}, closed={}

Visit S: open = {B,A}, closed={S}

Visit B: open={A,C,A,F,D}, closed={S,B}

Visit A: open={C,A,F,D,B,S,F}, closed={S,B,A}
Visit C: open={A,F,D,B,S,F}, closed={S,B,A,C}
Visit A: open={F,D,B,S,F}, closed={S,B,A,C,A}
Visit F: Goal Found!

kb EO

In this case we estimate the cost as the distance from the root node (in term of nodes)



A* . Example
]

h=1, w=1, g=

hj“ﬁ%

h=1, w=2, g=2
A
h=2, =2, W=7, =9
w=2 h=2,
9= 4’ w=1
OB G
F

s| A (F) @

Result is: S->B->F!

A

B

=0

2

s
w

T
n

Q = o
I
N = N

h=2, w=4, g=5




Hill Climbing

Special case of depth-first search

Uses h(n) = heuristic function as its evaluation
function

Ignores cost so far to get to that node (g(n))
Expand the node that appears closest to goal

Hill Climbing is not complete
Unless we introduce backtracking

Hill Climbing is not optimal
Solution found is a local optimum



Hill Climbing: Algorithm

List successors={}; Node root_node, current_node, nextNode;

current_node=root_node
while (current_node!=null)
if (goal(current_node)) return current_node;
else
successors=successorsOf(current_node);

nextEval = -*°; nextNode=null;
for(x in successors)
if(eval(x)> nextEval)
nexEval=eval(x);

nextNode=x;
current_node=nextNode,
endlf
endWhile

N.B.= this version is not using backtracking



Hill Climbing: Example

=0
h=1 h=1
A

h=2

h=2
h=3 O\ —> h=2 =2 h=2
S B @ F A C D

. current_node=S, successors (A=1,B=1)

. current_node=A, successors (B=2,F=2,5=2)
. current_node=B, successors (F=1,....)

. current_node=F: Goal Found!

0
>
@
o

wN PO

In this case we estimate the cost as the distance from the root node (in term of nodes)



Hill Climbing: Example

=

h=2

\ h=2
=2
S 8) (F) = A C

Result is: S->A->B->F!

Not optimal, more if at step 1 h(S)=2 we would
have completed without funding a solution




Informed Search Algorithm
Comparison

Best First O(bm) O(bm)

Search

Hill Climbing  O(0) O(b) No No

A* O(2N) O(bY) Yes Yes Best First

Search

b, branching factor
d, tree depth of the solution
m, maximum tree depth



- ILLUSTRATION BY A LARGER
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Route Search
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o Start point:
Milan

- End point:
Innsbruck

o Search space:
Cities
o Nodes: Cities
o Arcs: Roads

o Let'sfind a
possible route!




Graph Representation

Feldkirck @)
Landeck QO Innsbruck (Goal)
Q
Merano O
O Bolzano
(O Chiavenna
@ Sondrio
Lugano ¢ (O Trento
@ Bergamo
o
Brescia & Verona

o We start from the

O

root node, and
pick the leaves

The same apply
to each leaves

But we do not
reconsider
already used
arcs

The first node
picked is the first
node on the right



Depth-First Search

Milan
O
1
Piacenza O O ®
2
Brescia () ll l.
Verona
3
Trento
4
()
Bolzano ® ® ® ®
O Merano O . )
Innsbruck ® ® According to Google M.aps.
: 464 km — 4 hours 37 mins

Landeck '
O ' O
|

Innsbruck
N.B.: by building the tree, we are exploring the search space!



Breadth-First search

Verona

Piacenza

5

Brescia

11

22

Trento

12

Trento
23

Bolzano

Verona

24
Trento

Bergamo

6

Brescia

13

14
Trento
25
Bolzano

Milan
@
4
Lecco Como
7 8 9 10
Chiavenna Sondrio Lugano Lecco
15 16 17 18 19 20 21
Landeck Lugano Merano () Chi. Feld. Chi. Sondrio
2 0 \ / \ / / ] 1
\
O
sInnsbruck

According to Google Maps:
358 km — 5 hours 18 mins

N.B.: by building the tree, we are exploring the search space!



Depth-First Search vs Breadth-

First search
1

- Distance
DFS: 464 km
BFS: 358 km
Q1: Can we use an algorithm to optimize according to distance?

0 Time
DFS: 4 hours 37 mins
BFS: 5 hours 18 mins
Q2: Can we use an algorithm to optimize according to time?

o Search space:
DFS: 5 expansions
BFS: 26 expansions

Not very relevant... depends a lot on how you pick the order of node expansion, never the
less BFS is usually more expensive

o To solve Q1 and Q2 we can apply for example and Best-First Search
Q1: the heuristic maybe the air distance between cities
Q2: the heuristic maybe the air distance between cities x average speed (e.g. 90km/h)



Graph Representation

with ageroximate distance
1

Feldkirck

Lecco

Bergamo 80

Piacenza



Best-First search
1

Milan
Piacenza @) H=60 Bergamo @) H=55 Lecco (2 H=50 Como (@) H=45
_ . _ H=110 H=92
Brescia @) H=130 Brescia_(g) H=100 Chiavenna (@b Sondrio (@) Lugano B H=65 Lecco () H=70
H=190 H=220 H=160 H=190  -»50 H=q450 H3227 pH=105 H=245 H=130 H=142
Verona {9 Trento @ Verona @5 Trento @  |andeck § Lugano 44 Merano @ chi. @ Feld. @ chi.@ Sondrio (3
H=270 H=275 H=240 5245
Trento O Bolzano O Trento @ Bolzano H=313
Innsbruck

According to Google Maps:
358 km — 5 hours 18 mins
And this is really the shortest way!

N.B.: by building the tree, we are exploring the search space!



- EXTENSIONS



Variants to presented algorithms

Combine Depth First Search and Breadth First Search, by
performing Depth Limited Search with increased depths until a goal
Is found

Enrich Hill Climbing with random restart to hinder the local
maximum and foothill problems

Stochastic Beam Search: select w nodes randomly; nodes with
higher values have a higher probability of selection

Genetic Algorithms: generate nodes like in stochastic beam search,
but from two parents rather than from one



- SUMMARY



Summary

Uninformed Search

If the branching factor is small, BFS is the best
solution

If the tree is depth IDS is a good choice

Informed Search

Heuristic function selection determines the efficiency
of the algorithm

If actual cost is very expensive to be computed, then
Best First Search is a good solution

Hill climbing tends to stack in local optimal solutions



